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.DRAG CORRECTIONS IN.HIGH-SPEED. WIND TUNNELS:
By H. Ludwleg

SUMMARY

In the vieclnity of a.body in a wind tunnel the
displacement effect of the waeke, due to the finite
dimensions of the atream, produces a pressure gradlent
which evokes a change of drag. In incdmpresuaible flow
thls change of drag is so small, in gencral, that nno
does not have to taks 1t into account in wind-tunnel
measurements; however, in comprossible flow it bscomes
conslderably larger, so thet a correction factor 1s
necessary for measured valuss. Correction factors for
a closed tunnel and an open Jet wilth circular croas
sections are calculated and comrarsd with the drag -
correctlons already known for hlgh-sneed tunnols.

I. INTIODUCTICN

The presant report dsals with the sffocct of the
finite dimensions of the stream on the 4draez of models 1in
compressible flow. It will be assumcd: that the model
is An elither an infinitely long open et or an infinitely
long closod tunnel in which thore 1s a perfectly constant
veloclty wilithout the model instellation. Therafore, the
oclosed wind tunnel must bec slightly Sunersd te compsnsate
for the effect of the increasing boundary layer. The
following tunnel corrsctions will bo appliod for those
condltlions:

(1) When tke model is in an infiniitely long air
stream the stresmiines near the model are dilverted and

#"Widgratandskorrektur in HochgesohwindigkeitSkandlen,
Zentrale fur wissenschaftliches Berlichtswesen der Luft-
fahrtforsohung des QGeneralluftzeugmeistors (ZWB) Berlin-
Adlershof - FB 1955, G&ttingen, April 1, IolLk.
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the velocitles increased; however, 1f the model is in a
tunnel of finite dimensions, thé sStreamlines can not bend
outward at the walls cf the closed tunnel nor the veloclty
increase at the boundary of an open Jet. Instead, an
additional flow appears which produces an increase in

the velocity of the approaching flowv at the model in the
case of a closed tunnel and a decrease in the case of an
open jet. This correction was extended by B. Géthert

(1) and A. v. Baranoff (2) to comnressivle flow. It is
designated below briefly, as the dlsplacement correction
factor.

(2) On account of the drag, .a region:of dead alr
arises behind the body by which the flow 1s deflected
laterally. Because of the boundary conditions, an
additional flow agaln arises at the boundary of -the
stream which, while it does not produse a veloclty com-
ponent at the model In the closed tunnel on the other
hand évokes an additlonal veloclity at an inflnite distance
upstream from the model. 3ince the veloclty at an ;
infinlite distance upstream from the model serves as a
reference quantity, a correctlon fuctor 1s necessary.

B. Gdthert (1) calculated i1t for compressible flows and,
for short, it 1s hereafter called the dead-alr dlsplacement
correction factor. This correction vanishes for free flow.

Aside from these two correction factors, a third one
i1s necessary for the following -reason. -'The additional
veloclty evoked by the bounderles of the stream on account
of the dlsplscement effect of the dead alr produces a
velocity gradlent and, hence, a nressure gradient. Since
the model 1s then in these pressure gradlents, 1t experi-
ences sn addlticnal drag or feorward-acting force. The
corrsction necessary to compensate for this change of
drag will be handled in the present report. It is called’
the dead-alr pressure gradient corrsction factor.

II. CALCULATION OF THE CORRZCTION FACTOR FOR THE DEAD=-AIR
PRESSU&E GRADIENT WITH INCOMPRISSIBLE FLOW
To begin with, the correction factor 1s computed for
* Fhe pressure gradient of the dead alr for a closed e¢ircular

tunnel, and a cirocular open Jet-with incompressible flow,
Conslider a body of revolution located along the axls .of
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a closed tunnel. As a result of its drag the body has
s wake, whose effect on thelsurroundins alr is that of a
“bar with' 4 drag area Fy = 5 Cwy Fy - located behind the

body, or a source at.the position. of the model with the
yield (1)

Q=% op M Vo (1)

where de 1s the drag coefficient, F, the refererce
surface, and v, the flow velocity of the model. The
quantity FN’ i1s called the effective wake area, for
short. '

To define the veloclty grardlent at the position of
a source which is located on the axis of the tunnel and

substituted for the dead air, tue potentlal of the source
is taken as ¢é (x, v, '®) where x, r, 9 are cylindrical

coordinates and the 1line r = 0 conlncides with the axis
of the tunnel. The additional flow, with tho potential
$, along the tunnel wall, 1s defined so that

NN
T/ wall

for a flow & = ﬁé + g,

3222\
the quantity (_b ﬂ) is then tho desired velocity
,x? ‘model

gradient at the model.

The calculation of the veloclty gradient is reduced
to conventional calculations, Multiply the equation
=@y +@; by the tunnel diameter D and differentiate

with respect to x.
P e, n

The expressions appearing in this equation are
regarded as the potentials of a stream. Inasmuch as ¢Q
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regresenta the potential or a sourne ‘with a yleld Q,

7
D-s;g 1s the potentlal of a- dipole floﬂ of dipocle moment,

Mp = Q D which 1s easily confirmed by substitution and
diffeprentliation of the sourse potential. Further,

g% > = 0 along the wall of ths tunnel, whioh
follows immediately from the vanlshing of %g along the

bﬂi

tunnel wall. Consequsntly, = 13 the potential of

an additional flow which cancels the component of the
dipole flow normal to the wall at the tunnel wall. The

32
veloclty of this additional flow D ﬂé
Ox
g,
2

is equal to

the desired wvelocity gradlent excopt for the

factor D, This additional flow was used, Iln connaction
wlth the displacement correctlon factor already mentioned,
exactly like a dipole, therefore the calculutions that
have been carried out for thls can be applisd hers.

Lot DPgos Pos Vor Mg and qo revresent ths pressure,

density, veloclty, Mach numbor, end dynemic preossure in
the undisturbed flow far upatream from the model, and
P, Py V, M,and q be the corresyponding valuegs for the
principal flow plus the additl-cnal flow. In additicn,

P - Py = 4D; p = pg = bp, otc, _
At the dipole, or model, of dinole moment ¥y =D Q
the additlional velocity 1s:

. My
(8% hoder = v 33

according to Gdthert (1), with T, a factor depending on

the tunnel and the method of suspensilcn in the tunnel.
For the example used - a body of vevolutlon in a closed
circuler tunnel - T, = 1.02. acecording to the foregolng

(Av) dol is equal to D times the veloclty gradient
ode
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of a source Q at the source. Therefore

- - v - -,

p (%4Y) - p (%i) =T !2,.beoauae V= vy + AV
ax model vV n3

Substituting QD for HD and the expression from equation (1)

for Q glves .
v °WH K Yo
(g;)model T 2 p3

By Bernoulll's theorem

dv _ =1 dp
or
2 4v _ =14dp
Yy ax Gg ax
by substitution .
’ Ty O F '
2 fav - 1 v Wy M
FS (a.w_g)model - ?1'; C%)model = (2)

pJ

This 1s the préssuré gradient that the wake behind a
body of revolution in a closed tunnel produces at the
position of the body.

If a body 1s in a pressure rradient %E, it experlences

the following additional drdg (3)

- v
where Vi 1s the volume of ihe body and e =1 + VE

) M
Vg belng the volume of ths apparent mass of the body.
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Substitution of the value firom equation .(2) gives

@ Ty O Ty Vg @

AW = 3
or
AOWM a Ty VH
. Oy - 135 d (3)

If the mcdel has some type of surports (for example,
atruts or tension wires) with reforence surface Fq

drag coefficient ch, then the gporoorilate expression

for the pressure gradlent is:

) _ Ty Cwy Fip 4Ty, oWy Ty
q. Ci model ~

D>

For a strut or tension wire fﬁnning from the axls cf
the tunnel to the wall, then L 1s approxinutely 1l.15,

£5

which can be obtalned by extrapolsiion from Gothert's
value for 1, (1).

For the Cy~ correction f' rhor 1t follows that:
. A Cw, 'F .

. me

From equations (3) and (Iy) it 1s. evident.thet the cor-.
rectlon factor for the dead=alir oressure gradient l1s made
considerably larger hy high drap st the supnort.

‘The derivatlon for a free stream esn be carried
out -1n exactly ths same manner, In *his .cade 1t is only
necessary to require that no change of wvaloclty occur
at the boundary of the stream., Then axactly the same
equation as (l) 1s obtained, the only difference being

in the value for T, which is Ty ==0.263, for & body

of revolution 1n an onen jet.
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Therefore, the dead-alr pressure gradilent in s
_ closed tunnel gives a positive value for Ao, that is,

‘an increase in ‘drag. In a fiee dtream it causes a
decrease in oy . Consequently, the drag velues measured

in a closed tunnel.-must be reduced by the correction
factor for the dead-alr pressure gradient to obtaln the
values corresponding to the free medium. Conversely, the
.values measured in the free flow must be increased.

III. APPLICATION OF THE RESULTS TO COMPRESSIBLE FLOW
(a) Definition of the Effective Wake Area

The effectlve dead-air surface for 1ncomoressible
flow was:

y P
FN = > GWM M

The corresponding exvression for compressible flow
will now be dofined. According to the momentun theorem,
the dreg of a body 1% glven by:

w:J (v, = v) df
S PVivo

when the 1ntegration over the wake 13 carrisd out In a
section behind the body where the static prossure haa
again reached the valus P Further, it 1s assumed

that this section 1s 1ocated so far pehlind the body that

Av = v, = vV K v, and ' 8p = p, = p K Po

Approximately, then

=p. v av.df’
o oy

or

1 - [ &
> c,,M Fy _£ — af : (5)
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For the effective desad-alr surfaoe.: FN, and, therefore,
For the surface over which thé flow 1s deflected by the

Waxe. ' . . : .
T A
. TR, /I‘?ovo-m'df

or making the same approximations as before

Fy .=[%—:-.di' + 35- as - (6)

Assuming no heat transfer et ths model, it follows
from the energ: theorsm

v
1 4 — -1 ¥ pvaf =0
s \° 2 2

.-where 1 represents the heat content, .Singe pv 4df = dm
i Ve
is alweys prositive, the expression io + - - 1- 23

rmust vanish across the wake, on- the average. As an
approximation, it can be 36t equal to zero for each
streanllne, which then means that there 1s a constant
"stagnation point temperature in the wake. This assumption
13 also used 1n the evaluatlon .cf loss of momentum
measurements (I). Therafoge,

1°+—2—=1+'§"

Proceeding from the assumptlion that p = Pos and
Introducing the quantitles Av and Ap whlle bearing

in mind that 1 = E—ELI'g

4 _ Av . _ 2
Po Vo (k = 1) N,

By substitution 1n equation (6)

- . 2 Av
Fy = [1 + (K=1) }.o] /;-; ar

N
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and referring to equation.(S) _
Fy = % Owy Fyy [; + (K = 1) Mé%]- = ()

Therefore, the effective wake araa FN is greater in
oompressible flow for the same c than the. value 1in
1ncompreasib]e flow by the factor [} + (8 - 1) M %]

Thls 1s due to the fact that the wake 1n compressible
flow has a lower density, as well as a lower veloclity.

ST A

(b) Application of the Formula for the Correction Factor
for the Dead-Alr Pressure Gradlent with the
A1d of the Prandtl Theory

To apply ejuations (3) and (L) to compressivle flow
the Prandtl theory will be used 1n tine foma of the
stregmline analogy (5). For the preseant problem 1t
reads as follows:

Assume a model in flow at a Mach number M, 1in a
tunnel of dlameter D; 1n 4 tomparison tunnel with

dlagmeter D Vg - Moa with a model in incompressible
flow whose dlimensions including the wake, have been

reduced by VI - Mo2 at right sngles to the dirsction of

flow and remaln unaltered in tho direction of flow. The
additional longitudinal velocitias appearing 1in the

compresaible flow are then times greater than

1= Mg 2

for the corresponding ‘points in the Incompressible
comparison flow,

However, at corresponding polnts in the comparlson
1

-MO
larger on account of the displacement of the dead ailr

tunnel the additional velocltles are times
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than In the original tunnel with incompressible flow,

since the model 1is . 1 longer in the incompressible
) \/1 - uoz

comparison tunnel relative to the dlameter, while the

cross~sectional dlmensions of the model and desd alr are

equally large relative to the tunnel dlameter, Therefore,

for the same dead=alr dlsplacement in compressible und
incompressible flow ln the sanie tunnel, the velocity

2 /
52
a."Mo)

slnce the dead-alr displacement for the same values

Besldes

gradiént increases by the factor

increases by [? + (kK - 1) Moé] the wvelocity

1+ (k- 1)Mg2
gradient increases by ( Mo if the o retains

(- Moz) 5/2

of Cw

the same value.

Consequently, equation (2) *gskes the followling form
for cormpressible flow .

£ (&Y = S - 8
v (g;)model 23 (1 - M°2)772 (8)

Bernoulli's eguaticn gives‘

do . _ , &v
. q 23 .

for compressible flows, It follows from this, that,

T %w_F [1 + (k = 1)1&02]

_ 1 @p sy M ul
1
9 \ax/modet 3 (b - 1,2)%°
and when we agaln set
d

dx M
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there ‘follows
= e 'A°WM a 1v_yH.E;"+.(n - 1)M°€l

BOEENE N CEE L) e

or Tgp Cwp Fp

AcwM a Ty Vi G. + m E_ + (k - l)Moe_-l
\3/2 (10)
X

Equation (9) holds for a model if the drag effect of the
aupports 1s ignored, while this has been taken 1into
account in equation (10). The values to be assigned to
the factor a for compressiblo flow are discussed in
the next section.

(c) Bodies in Compressible Flow with a Pressure Gredient

(Definition of the Factor a)

It 18 a well known fact that a body of volumo Vﬂ

in an Incompressibls potentlal flow with a pressurs
gradient gﬁ oxperiences a drag

dp .
= =
. W 3 V..

:
P VS
According to G. I, Taylor (3), a =1+ v where Vg
M

1s the volum¢ of the apparent mass of the body. For
slender, streamlined bodles Vg << V;;, .consequently,

a 1s approximately equal to l. The valuss of the factor
a for compressible pubsonic flow with pressure gradlents
are obtalned by application of the energy theorem,

Consider a compressible strsam cf 1nfinite extent
with a pressure gradlent in- the direction of flow, The
pressure., density, veloelty, heoat content, and internal .
energy of the undisturbed stream are denoted by B, p,

v, I, and U, respectively. When a body 1s in the stream,
let n, p, v, 1, and u represent the disturbed values in
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the vicinlity of the body. Further, assume that there 1s
perfect flow around the body. Then, at greater distances
from the body p = P; p = P, ete., To continue, the
Bernoulll equation

1+ %? =T + %? = Constant

holds for all points In the flow iIn a reference systen
fixed In the body. Now lmagiite =z control zurface around
the body with a large dlstance uetﬂben the two, dlsplace
the body by en amount -d% wi{th the control surface
rigidly fixed and apply the .cuovrzy theorim to the-.flow,

The energy removed from'thﬁ flow by the dfaplacement
1s then equal to  dx, where ./ 1s the drag on the bedy,

2 ' :
LWP 61 + _v?> ey is the energy of thes gas

enclosed in the control surface, 4if Vk 13 sho volume

enclosed by the control surface and If p =0 at the™
positlons of the model, in evaluating the Integral.
The change in the enclosed energy oroduced by ths
disnlacement of the Ybody 1s then:

The Incresase 1in ensargy witain the control sw»ace due
to flow through the contrel surface curing th: Jisnlacenent

is
Pt ,:/\ /o
L !L Cpvy (1 'é') ar at
. -K - .

whon .t1 1s en instant prior to'thé sturt- of the dis-
pPlacement and t2 an instant after the displacement
at which the stationary state 1l1s ag“in reached, I, 1is

the control surface and v, is’ tnp cbmppnant of the -

L]
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velocity normal to the control surface, During the . .. :
_displacement of the model the Bernoulli equation-does

42 32 :
not apply in the form: ‘i +'1? = I +: ?; Constant einoe

the flow in thé present reference system (at rest, referred
to the-original position of the body) is no-longar station-
ary, because of the movement of the model. A tloser: :
examinetion shows, however, that these deviationa -fall

off so rapidly with ‘increasing distance from the model

that for very large distances wof ,the control surface from
the model, nevertheless, it 1s possible to write

i+ %? T + E? = Constant dhd then Bring it out in

front of the integral. Therefore

S PR A

The integral on the right side simply represents
the excess of incomlng over outgoing mass between the
tlmes 't and -t5. Therefore it follews from tho equation

of ontiruit

According to the endrgy theorem the ‘energy of the
stream- taken up during the displacement must equal the
loss of energy of the gas enclossd 1n the control space
plus the excess of energy entering the control surfaces
over that leaving. Therefors,

eI 62 SRE-Y! a@

Since ,the undisturbed quantities p, p, Vv, 1, and u are not
affected by the Alsplacement
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fff (‘“") av "-Oandd(rffpmb .

whare P, U, and v at the positions of the model are _
-asslgned the. values that prevail when no model 1s present.
From this 1t follows.

{m 95 (ﬁ)}
r+--) m'l[’(p-p)av

The volume integrals which covor tne entire volime Vx
enclosed by the control surface are spilt Into two
Integrals, one of which extenis_ovor Vy the sngce
octupied by the model, while the other extends over the
space Vg - Vi occupled by the fluid while observing

Imnediately that by ssasuwnption p = C 1n the space Vy.
Therefore

- iy . ‘lzr‘f [; (? +'%§ - #’ ﬁ'+ ——- d{}.
fr(I_+:"§)d rrf (p - p) av (1)

VK" Vi

Essentlally, the only contributicns to the value of both

integrals cver Vk - Vﬁ come from the immediate vicinity
of the model since. p->p, u—>1, dnd v—>7V at points
 more dlstant from -the model., Therefore, for sufficlently

" large values of VK the Intsgrals become 1ndependent of VK
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Assuming only a small pressure gradient in the

undisturbed flow, it can then further he assumed as a
" good approximation that the discrepancles btietwsen undis-
-turbed and dilsturbed flow in the case of flow with a '
_pressure gradlent are equal to the dlscrepancies betweon

the ‘same quantities 1In a parallel flow with the same kach
number. Now the last two integrala of equation (11) cen

be’ evaluated for corrasponding varallel flow,

With Poy, Pos Vos 1o and ug denoting tho undisturbed
magnitudes of a purallel flow

nkeaes
D] oo

VK-V

fff “_.)'-po @, .
( +__) fJf oo av

in which the left side is to be evaluated for flow with
pressure gradient and the right side for a parallel flow,
and Pg, Uy, Vo, must be taken equal to the values of P, G, 7

. at the locatlon of the model.

vl To, define the two integrals on the right slde one
proceeds as follows: On accelerating a model 1n incom-
pressible flow there 1s d drag W whers

av
Vv
=P Vs at

in which %% is the aoceieration with resﬁéct:to the

f;uid and Vg the volume of the so-oalled:;pparent mass.
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Correspondingly, for compressible flows _
dv
W= Vg £ (M) — 13)
Pos'odt (13

where Ppo 1s the undisturbed denéity at a distance from
the model, V_, the value of the apparent mass for incom-

S
pressible flows, &Y the acceleration relative to the
as

fluid and £(M,) a function of the Mach number. The
magnitude of the funmetion £(},;) will be given closer
attentlon later on. :

Consider, now that the model is in a pargllel flow
end moves along with the streasm. Tnen, p = Pg» P = po,etc.

!n the entlre space occupled by the stream. The flow 1s
viewed from a reference system in which the undisturbed
velocity 18 v,. At a great distance from the model there

is a perpendicular control surface. Now; let ths modsl
be slowed down to rost, gradually and, agaln, apply the
energy theorem to the fluid in ths control space.

During the process of siowing down the following
energy 1ls teken from the flow

‘432 fZ AR dv,,
].w ax= 1 Po Vg £ a, T (vg = vp)at

where X1s X5 tl, and t2 represent the place and time
of the beginning and end of the displacement. V, 1s

the relative veloclty of the modsl with respect to the
undisturbed flow, From this one obtslins, thon, by
: \'4

r

tran%;brmatioﬁ and taWing Into account that E; =N
o . » -
and — =M .
a (o]

0o
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xa .vo vr
' Wax = Po Vg T ('a_) (vo----vr) av,
X3 (o] o . .

v 2 > o .
= Vg po-g—i?ﬁ £(H) (Mg - M) @ (1)
which by setting o |
2 ° . ' (15)
E;g‘]; (M) (M, - M) au = g(M,)

becomes

. A%
2 . ;
Wax = Vg po —— 8(Mg)
Il 2

The change 1n the energy enclosed Iin ths control space 13:

S R

where the integral is ftaken ovir the vicinlty of the
modol &nd Vi 1s chosen lurge cuowsh =2 that further

Incresses do not affect the ints _ -rali.

For the excess of energy added over that taken away
through .the control surface during the brsaking, one has:

4ffzp;n (1'+f: at a
e -

-VM
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2
v
and here, too, 1 + %? approaches 10 + -g— so rapldly

with increasing separation from the model that one can
write this expression in front of ths integral for a
suffliciently large control surfaco.

1y

The energy theorem then reads:

. v,2
Vspo-—é-—g(M)" u.+---->-po u°+-—- av
1+-- ff‘[v(p-po)dv

However, the right side 1s exactly equal to the rizht side
of equation (12). From this throuch substitution in
equation (11) the following 1s obtained:

56D |3

ve
+ d'V ry

5P S8 (ml (16)

Asasume now, that the pressn.u gradlent ~R 1§ small
and constant along the chord of &hz model, then a%,

g: etec. must also be consldered constant along the model

and .
wa:::f; E(‘\I+§) vy dax - 'I+v2>

ve
"'%I:E 28(11)]
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or taking into aooount
T Tw B p ‘and I

By substituting in (17)

- w2 L, L1 dp
W--szM-(-z)s(H)+2(l+_2 W s'(m-dﬁv

and, to get a inore’ comnact expression, introducing

— ) .
h (W) = (} - %{ g () + E (} + = > L i#} gt (W) . $18)

then . : T .
w=-& uramyv) o as
which gives - ° _ ' '
. Vg _ _
a=1+= h (H) : (20)
RN | _

for the factor a 1in equations (9) and (10).-
Equation (19) now permits the definition of the drag

of a ‘model in compressible potential flow with Mach number N
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and a pressure gradient %E, 1f the acceleration drag

of the same model fopr the;range of Mach numbers between
and N, and, therefore the.function f£(N) in
ejuation 113) is known.

For incompressible flow (M = 0), £(0) in eguation (13).
becomss 1, From that one llkewlse obtalns 1 for the
value of h(0), and equation (19) goes over to the
familiar formulg developed by Taylor

P
.
v;=-3£(vu+vs)

The sdditlonal drag experienced by a wing which
satlisfles the assumptions of Prandtlt!s theory when it 1is
in a flow where a pressure gradlent exists will be :
investligated. The first thing to determine 1is the wvalue
of acceleratlion drag for such s wing that willl give the
function f£(M) from which h(M) can then be obtalned.

To begin with, lst the wing liave a stationary motion
with a velocity v, In a medium that has the undisturbed

- values Dy, Pgs 1, and uy at a distance from the model.

In a reference syatem wilth axis fixed 1in the wing the
potential @g of the statlonary motion then becomes:

g = vy x + ¥ (x, 7, 2z, M)

where Dg approaches zero fur from the model. Now 1f

the wing moves with the same veloclty and a small acceler-
ation b, then the velocity fleld can be consldered quasi-
stationary., The assumption that the acceleration b be
small 1s necessary here in compressible flow 1.1 constrast
to the Incompressible flow, slnce all disturbances must
spread out with a finite velocity and since at larger
acceleratlons they produce the larger presaure differsnces
apvpearing between accelsrated and unaccolerated motion,

as well as donslty differences and the corresponding
velocity differences. Then the appropriate potential ¢

Isz
' bt
¢=<1+;;) I:vox+<ps (%, v, 2, MZI
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where v, 1s the veloclty attalned exactly at the time

t = 0. Now to find ot how the "difference of pressure
appearing on the wing surface, at the time ¢t = 0,

betwean the stationary and acceleratsd motion depsnds

on the lMach mumber; for this pressure difference certainly
ylelds the acceleration drag.

For the statlionary motion with the assumption of
adlabatic flow, Bernoulll's eguetion reads:

vl v 2
S- _ o
1S + -E_ = 10 + —E_ (21)

Applying the more generael form of Bernoullli's
equation to the motion that %s not stationary:

?+"2+P 7 = Constant
t > - uonstan

The heat content 1 can bs substituted for the
pressure function P ajaln. U is the potential of a
force fleld that might b2 present. Since the reference
system flxed 1In the bedy 1s an accelerated refeience
system, 1t 1s neceasary to set U = bx. For the instant
t = 0 the general Bernoulll ocuatlon tien reads

o) 2
b PS b . ve - Yo
bx+vo ?g (x, 7, 2z, M)+a-{-a—o+—2—+1-bx-bx+-z-
+ 10 = bx
or
6tp Lo v2
b S b v _ 0 .
v—o-Cps (x, Y, 2, M)+6M a°+-§-+i- > +1O (22)

Since tho flow 1s quasistgtlonary with raspect to the
voloelty fleld
vo2 vz

S ¥

2 - 2 .
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From this and equation (21) and (22) it follows that:

- - 0 v g
is-i—Ai—;;’ ¢S(x’y,z'M)+;;-é;-

For adlabatlic flow dp = d1 18 valid. 8Since a small

acceleration and slender model have been assumed, as an
approximatlon, therefore one can set:

Ap
Po Al

Then from this it follows thet:

b o9
Ap=po77; ¢S+-SBT-M
The quantity ws 1s the potentlal of the 1lncreased

veloclty appearing at the proi'lle., Therefore, according
to the Prandtl theory the following holds at ths profile
surface :

1
Py = ===
S VI R S incompressibie

6q’s ne

M (1 - M2)3/

Incompresalble

Consequently, Ap becomes, at the profils surface

b . 1 u2
Ap=p, T @ - +
o esibl 1/2 3/2
0 "incompressible | ., o, / (1 - M2)3 :
C o 2 g ok -
= Po ¥, Mincomprescible (1 - H2)3/2 '

The acceleration dragz thet appears Iincreases by

L_B/E. Therefore, according to equation (13) the
(1 - N2)
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From that and equations (15) and (18) the functions -

g(M) and h(M) also follow _

following holds for f(My): f£(M) =

_ 2 _ 1/2
g(m = [1-0a-® :] (23)

n(M) = Q - .N!?'.) g(m) + X1 « 5.-___1_M2) gt (M) (2h)
2 2 2 : .

The function h(M) 1is shown in figure 2. One sees

' \'
that the factor a =1+ h(M)-VE- appearing in equation (9).
: ' M

and (10) is increased further by the effect of compressi-

v
bility. For slender bodles for which 53’ is small
M _
compared to 1, one can therefore also set a =1 for
compressible flow as an approximation.

The arguments carried out to define the potential
drag of a body in compressible flow with a pressure
gradient assume that the.flow is a perfect potential
flow. The validity of the Prandtl theory was only
assumed for the definition of the acceleratlon drag to
learn the function f£(M). _ ”

Even after the valldity of the Prandtl rule has been
exceeded, with the appearance of local supersonic fields,
however, the flow can still be considered as loss-free
potential flow, if the subsequent passage of the flow
into the subsonic region takes place adiabatically and
also if, as a coarse approximation, the flow remains
loss free in the face of weak shocks (naturally, neglecting
the wake due to friction and separation of flow’. The
increased veloclitles appearing at the profile circumference
are underestimated, in this case, when obtained by Prandtl's
theory: Therefore, by the same arguments advanced in the
derivation of the function h(M), in the application of
equations (23) and (24) at Mach numbers exceeding the
critlical value, the correction factor is somewhat
underestimated.

For slender bodies of rotation in incompresslble
flow Vs 1s very small compared to Vpy, so one can
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set a = 1  as a good approximation, Now, since the
induced wveloolities Increase considerably slower -for .
the body of rotation than for the wing, ‘the functlion - .
h(M) deviates from 1 still less, so that one can

set a =1 as a good approximation in compressible
flow for bodies of rotation.

IV, LIMITATIONS IN THE APPLICATION
OF THE CORRECTIGH FACTOR

80 fur, the desad glr .has simply been replaced by
a source, at the center of gravity of the model, of such
a strength that the dlsplagement it »produced downstream
from the model was egual to thke cead=gir displacement.
The velocity gradient of the addlitlonel flow was then
defined at thls source on the assumption of codstancy
over the sntire chord of the wodel, Actually, the
substltuta ‘source should be spllt up into many swall
sources and sultably dlatributed to £it in along the
model and eventually the forward part of the wske,
Then the additlonal flow of ell thess sources should
be determined and from this by integration the velocity
gradient which could vary along the mocel.

To check t6 what extent the above. simulificaticns
are permisaible, conslder figure %.

* Here the varlation of the..addltional veloclty slong
the tunmnel axls 1s given for a sourcs ¢ on the tunnel
axlis in incompressible flow., According to figure 3 the
curve for the closed tunnel 1s3.deflned for a dlpole . -
from the additional flow by integratior.. The values-for
the sdditional flow for a dipols are taken from a calcu-
lation by V. Baranoff (2) for the displacement correction
factor. Such a single source produces an approximately
constant veloclty gradlent of the additional flow for
approximately 0.7 tunnel radius, both upstream and
downstream. ' Tharefore, if the modél.is short (less than

0.7 tunnel ‘radius) it-is: atsrial how the single
sources’dre distributed inﬂ de;¥he model' because the .
resul ting veloclty gradient 1s.always.the same as for ar.
combined sdurce of equal total strength. However, since-
the principal part of the volume of a longer streamiined -
body 1s in the -céhter of .the model and, in addition, the
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substlitute sources are to be applied to the central .

---pQrtion of .the ,body, essentlally, the formula derived
for incompressible flow can be used up ‘to model lengths
of one tunnel diameter. :

The variation of the additional: velocity for
compressible flow for the same breadth of wake 1s obtalned
by the Prandtl theorem by increasling the ordinates by a

1
1 -uoa

factor of \’1 - Moz.

Therefore, the model length for which calculations

factor of and decresasing the absclaaas by a

Ean be made with constant veloclity gradients is \’1 - Moa

shorter for compressible flow than for Ilncampressible
flow. If the model exceeds the permlissible length, the
amount by which the correction factor from the derived
formula 1s too large can be estimated from figure 3,

The varlatlon of the addltlional flow of a source
in a free Jeot with incompresslble flow also appears in
figure 5, The curve 1is tsken from the work of
D. Kichemann and F, Vandry (6). Ons obtalns the variation
for compressible flow by the same distortions as for
the closed tunnel, It 1s apparent. that the correction
fagctor for tho free flow has tha ovposite slgn from the
closed tunnel. In addition, the correction factor 1s
only about a fourth as large as for the closed tunnel,
The length over which the pressure gradlent can be
consldered constent 1s likewise smaller for free flow.
By means of figure 3 an estimmte can be made of the
amount by which the correction factor formulas Indicate
the correction factor too large for longer models.

As stated already, the correction rormula for
free flow with the same slze models in tunnels of the
same slze 1s agpproximately one fourth that for the .
olosed tunnel. With long models, for which the validity
of the correctlon formula has already been exceeded,
8ince 1t can not be evaluated over the-entire length of
the model with constant pressure gradients, the offective
correction fsctor with free Jet 1ls considerably smaller )
than-a fourth of the correction factor for a closed tunnel,
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for the formulas which apply for constant pressure
gradlents loase thelr validlity wlth a free jet even with
smaller models, and indicate the corrections too large.

V. CONPARISON OF THE CCRRECTION FACTOR DERIVED WITH OTHER
DRAG CORRECTION FACTORS AT EIGH HAéH NUMBERS

According to GOthert (1) the displacement correction
factor furnishes the following velues for the dynamic
pressure, or Cy, Wwithout teking into account the supnport:

r - 2
27\.v1"7 ‘M ( HQ)

Ac:wbI _ 2

1 Oy D3 (1 - u,2)°

On comparing these correction factors wilth the correction
factor for the desd~alr pressure gradient (equation {9)), it 1s
seen that for incompreaslble flow (M. = 0] the

correction factor for the dead=air préssure gradlent up

to the factors a or A,, which are nearly 1 for

slender bodies, 1s half as large as the displacement

correction factor. Moreover, for incouprossible flow
S

a=1 +‘;— and A, 18 a factor with which the substi-

M
tute dipole strength can bs obtalned from the volwns of
a body end the velocity of flow near 1t. As Glauert (7)
who defines Ay somswhat dlfferently has shown, a = A

exactly for incompressible fliow,

v

The increase of the correction factor with ilach
nunber 1is different, however, for the two correction
factors.

In figure 1 the ratio of compressible to incanprasslble
correction factors for condltlons allke iIn other respects
13 plotted agezinst Mach number. The correctlon factor
for the dead-alr pressure gradlent rises considerabl
faster than the displacement correction factor, so that with
M 2 0.35 tho dead=-alr pressureegradlent correction faetor
15 alresady just as lsrge as the displacement corrsction
factcr, while at XN = 0 1t was only hali as large,
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According to-G5thert, the dead-alr displacement

. correction factor furnishes for a model without taking

irto account the support - N
- .
y o
1 - —'
.G - : )
LR S D‘2 (1 - %.2)

LY

or taxing 1ntb aocount the srreadin ‘out of the dezd
glr -threugh compressidility and III%a

. 'LT
: ‘0 5
Ac’wm_aomeM 1-_.5._ E_+(u-1)uo]
Gy 7 D2 (1 - K_2)

.. The rise of this ccrrecilon factor syith Mach number
18 likewlse shown in figure 1. It rises even slower with
Mach number than the dlsplacement correctlon faztor.

.Since the dead-alr displacement corrsction factor for

Incompressible flow and slender Todies with small ¢

18 amgller in gerneral than the other two correction
factors, it lags behlnd these even more at hizher Mach
numbors, :

W

Thrcugh the drag of tiae suprurts, tha dasd=-alr
pressure=gradlent ccrrectlion factor coan be incraasazd
conslderably as shown in eguation (10). It can then
considorably excsed the dlsplaceuent corrscilon fackor
1f the suvpports have very large drag for relatively
small vclume (for example tensli-n wires or struts, on
axceeding the critical iiach numbar).

As an extreome example, ccnsider a streamlined body
of rotutlon wlth a dlameter of 100 millimeters, and a
volume 2 liters, in a closed tuniel with a diamster of
1 meter. The body 1s suspoended ch six strong l-millimeter
gauge tonsion wires.which run parpendiculer to the flow
from the modcl to the wall. The drag coefficlent for

.ths =model 18 ¢, = C.05, for the +ens;on wilres 1t 1s

W =
Ccw = 1.5 snd the ¥eoh mumbsr is 0.8. Then oquation (10)
glves:
. . Ac . N
cw.h=0-13 TR
CWAT . A
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7

This means that, In this case, the drag.is in error by
15 percent becauae -of the dead-alr pressure gradients.
Displacements correction .factor and dead-alr displacement
correction factor only give 1.3 percent and 0.65 percent,
respectively, aecording tq Gothert.

This exampls shows thal sttention must be given to
this prohlem in higli<speed turnels in the measurement of
models with low drag, to keep the drag of the supports
very low sc that dead-alr pressure gradients will not
give false drag indications. Tension wires.and, struts
too, for which the criticel kach number 1s reached
rather early are, therefore, extremely dlsadvantageous.

VI. SUMMARY

It has been shown that in addition. to the usual
drag and kach number correction lactors for high-speed
tunnels whlch take 1into account change of veloclty at
the positicn 6f the model due to the model and dead-
alr displacement, a further drag correction 1s necsssary.
This correction facton deslgnated tie dead-alr pressure-
gradient correction factor, 1s besed on the fact that
a pressures gradlent arises whon tho dead alr departs
from the position of the model, which produces an
additional drag or forwurd-acting forca. It hes been
shown that this correction factor 1s of the same order .-
of magnitude as the other two corrscticn factors and
that 1t can even be considersably larger in speclal cases.
In addition, it rilses the fastest of all correction
factors with an increase 1ln Mach number under conditions
that are otherwise allke,

The following formula has been derived for the dead-
alr pressure gradlent correction ln the closed clrcular
tunnel and the circular open Jet:

T . Cg, F
cr v (1+-YATAA l__1+(n-1)M2]
ic v M - g °w 7 - 0
izl ¥ M

S D3 (1 - u,2)7/?

In this, a 1s a factor which depends on the shape of
the model snd 1s somewhat larger than 1 for streamlined
bodies. For streamlined bodies of rotation a =1 18



\'
a good approximation. For a wing a=1+ h(M ) ?E
,\". M
where: VS is the. voluma of tho apparont masa of the
wing in inoomprebsible flow. and Vﬁ the volumo .of the -
wing; - h(Mo) is' a function of the Mach number which 1is

shown in figure 2. S

Ty and Ty, are factors which depend on the

tunnel shape and the instaliation of the model, that
i1s the mounting in the tunnel. For bodles at.the center
of the tunnel with small cross extent relative to.the

tunnel dlameter, T, = 1.02 In a closed circular tunnel

and T = ~0.263 1in a clrcular open jet under the

" same condltions.

According to GYthert (4), in the closed tunnel
for .2 wing whose wing span B 1s no longer small in

comparison with the tunnel diametor D the factar Ty

becomes

B | o | 0.25 | 05 | 0.75
T, | 1.02] 1,04 | 1.06 ['1.10

By extrapolatlion to B/D = ~ 1,16 1is obtained

for suspension devices (struts. and tension wires)
reachlng from the center of a closed tunnel to the tunnel
boundary. The quarntlty Vu 1s the volume of the model
and c. Owp EM’ and F represent the drag coefficlents
and, respeotively, the referenoe surfaces of the model
(supscript m) and the support (subscript A).
1+ (6 = 1). M
(1 - M02>5/2
times .larger the dead-air pressure gradient is for a
Mach number - M, than in incompressivle flow (compars
fig. 1). : o :

The functlon

indlcates how many
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. In conclusion, in determining drags through loss of
moientum, measurementa, the dead-air pressure-gradient
correbtion factor disappears since the additional drag
due. to the pressure gradlent of the wake 1s a pure
potential ‘drag which 1s not assoclated with any loas
of flow and, on that account, 1s not notlceable in

the wake, :

Translated by Dave Felingold
Natlonhal Advisory Committee
for Aeronautilcs
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Figure 1. Increase of the correction factors with Mach number.
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Figure 2. h (M) for a wing.
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Figure 3. Additional velocity for a source (Q) along the tunnel axis.
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